Coupling Large Volume Injection for Aqueous Samples and Organic Extracts with LC-Tandem Mass Spectrometry

Alix Robel, McKay Allred, Will Backe, Aurea Chiaia, Ben Place, and Jennifer Field

Department of Environmental and Molecular Toxicology Oregon State University Corvallis, OR

Outline

- Large Volume Injection (LVI) a revival
- Myth Busters: SPE and LVI
- Applications
 - Aqueous samples & Organic extracts
 - Illicit drugs in wastewater influent (1,800 mL)
 - Oil dispersant (surfactants) in seawater (1,800 mL)
 - Fluorochemicals in groundwater, landfill leachates, and papers & textiles (900 mL)

Advantages and Disadvantages Concluding Remarks

Alumbaugh et al. 2004, J. Chrom A, 1042: 89., Schultz et al. 2004, ES&T, 38, 1828; Schultz et al. 2006, ES&T, 40, 7350; Schultz et al. 2006, ES&T, 40, 289; Huset et al. 2008, ES&T, 42, 6369, Chiaia et al. ES&T, 2008, ES&T, 42, 8841

Place et al. J Sep. Sci, 2012,00–,1;Isaacson et al. Anal. Chem, 2007, 79, 9091 Backe et al. 2011, Anal. Chem., 83, 2622; Backe and Field, 2012, ES&T, 46, 6750

History of LVI

- Large volume injection (LVI) initially developed and utilized for non-MS/MS applications (e.g. UV-Vis)
- Emergence of LC-MS/MS, the flow rate cannot support large volume sample injection-LVI replaced with SPE
- Instrumentation supports larger flow rates
 - SPE entrenched in regulation and many standard operating procedures
- LVI re-emerges with some instrument modification

Busetti, F., et al. (2012). "Trace analysis of environmental matrices by largevolume injection and liquid chromatography-mass spectrometry." <u>Analytical</u> and Bioanalytical Chemistry 402(1): 175–186.

Myth Busters: SPE and Mass Spectrometry

- SPE is necessary to concentrate analytes from environmental samples
 - Load a 100 mL sample onto cartridge, elute in 1 mL = 100 x concentration
 - Mass delivered to detector in 10 µL extract (1% of extract volume, labor costs) = 1 mL of sample (LVI)
- Protect expensive analytical equipment from "column killers" and non-volatile salts
- Reduce sample matrix complexity

Why Not Just Use SPE?

- Filtration and SPE = positive and negative artifacts for fluorochemicals
 - Fluorochemicals (e.g., PFOA) used as filter wetting agents (positive artifacts)
 - PFOS removed from water during filtration (negative artifacts)
 - Manifolds (PTFE seals) and SPE media contain PFOA
- SPE is costly (time and materials)
- SPE materials vary by lot

- 'Fuss factor' (especially true if not automated)
- And, it turns out, SPE is 'chemically redundant' with LC

Chemically-Redundant Processes

SPE	Large-volume Injection
Sample loading (5 – 1,000 mL)	Aqueous sample loading (LVI) onto reverse-phase LC packing
Wash (removes matrix)	LC gradient 'tuned' to wash column
Elution (µL to mLs of total solvent)	Gradient elutes analytes from column
Extract concentration (e.g., N ₂)	No equivalent
Injection small portion of final extract (10-20 μ L)	No equivalent

SPE Disadvantages

- Cost cartridge or disk
- Time to manipulate

LC Advantages

- · It is already used in the method
- Only minutes added = cost effective

Redundant Chemistry

"To increase reproducibility, sample cleanup procedures should be automated and –if possiblebe integrated into the LC separation process." -Klaus K. Unger

H

Large Volume Injection-Visual Aid

- Modifications: 900µL loop, analytical head, use of mainpass/bypass
- Worked closely with Doug Martin (Agilent) to understand/use bypass function and for setting flows
- Agilent offers a multi-draw injection kit for volumes up to 5,800 mL!
 - ✓ although commercially available, few units in use (most likely for prep-LC)
- Nothing 'magical' about 900 μ L
 - Only limited by phase-tovolume ratio & breakthrough volumes!

Application 1: LVI for Illicit Drugs in Wastewater

- A tool for community drug surveillance
- 24 hr, flow-normalized composites of raw WWTP influent
- HDPE bottles, frozen
- Centrifuge
- Spike with stable-isotope internal standards

1800 µL Injection LC-ESI/MS/MS

System:

Agilent 1100 LC interfaced to a Quattro Micro MS/MS (ESI interface)

LC injector: 1,800 μ L

Columns:

4.0 x 2 mm C₁₈ guard column (Phenomenex) + 100 mm x 2.1 mm Hypersil Gold C₁₈ with 3μ m particle size (Thermo Electron)

Flow Rate: 500 µL/min MS/MS:

positive mode, 60 msec dwell time, increased desolvation (450 °C) and source (150 °C) temp

Illicit Drugs in Raw Wastewater

Time line: 7.35 min 'extraction', 9 min separation; 3 min re-equilibration

Illicit Drugs in Raw Wastewater

What About Matrix Effects?

There are matrix effects but stable-isotope standard compensate!

Method Performance

Illicit Drugs and Human urinary biomarkers

	Large-Volume Direct Injection	SPE-based Methods
Sample Prep/Cost	20 min 'on-line'	SPE material (\$) and analyst time
Sample size/ Injection volume (µL)	1.8 mL (1,800 μL)	50 ^c -100 ^{a,b} mL (25 mL) ^b
Run time (min)	20 min	20–22 min ^{a,b}
LOQ	2.5-50 ng/L	0.2-5 ng/L ^a 10-50 ng/L ^b 0.6-8.7 ng/L ^c
Accuracy	Concentrations from solvent-based curves equivalent (95% CI) to standard addition	50–112%ª 65 – 120% ^b 51–107% ^c
Precision (RSD)	2-4%	1–8% ^a , 1.4–8.64% ^c

Collected 30 sec eluents (0.25 mL)

AgNO3/HNO3

LVI and Seawater

Sample Preparation

- > 25% IPA (v/v) added
- Calibration in Instant Ocean [®]
 Agilent 1100 HPLC
- 1,800 µL direct injection of seawater with 25% IPA
- C18 guard column + C18 column separation

Waters Acquity TQD (ESI)

- MRM mode: DOSS, EHSS, Span 80
- Precursor ion scan mode: Tween 80 and Tween 85

Corexit Analytical Method

18

Method Parameters

- Standards were prepared in Instant Ocean[®] seawater.
 - The high salt, buffered solution mimicked the ionization suppression of actual seawater
- Accuracy and Precision experiments were performed using Oregon Coast seawater as the model matrix.
- DOSS LOD/LOQ are equal to accommodate for high variability (130% RSD) of background contamination.

	LOD	LLOQ	ULOQ	Recovery	RSD	Quantification
Compound	(ng/L)	(ng/L)	(ng/L)	(% ± 95% CI)	(%)	Method
DOSS	67*	67	34,000	88 ± 10	10	ISC: ¹³ C ₄ -DOSS
α-/β-EHSS	1†	49†	25,000	86 ± 11	11	ISC: ¹³ C ₄ -DOSS
Span 80	1,250	3,000	60,000	91 ± 21	23	Ext. Cal
Tween 80	987	2,700	400,000	119 ± 13	10	Ext. Cal
Tween 85	99	700	150,000	106 ± 20	17	Ext. Cal

* DOSS LOD is equal to DOSS LOQ due to background variability.

 † α-/β-EHSS concentrations were determined assuming equal molar response as that of DOSS.
 ISC: 13C4-DOSS - internal standard calibration using 13C4-DOSS as internal standard, Ext. Cal. - external standard calibration

Application 3: Organic Extracts for Perand Polyfluoroalkyl Substances in Groundwater

Extraction options:

Direct Aqueous Large-Volume Injection

- long-chain PFAS stratify in aqueous solution, adsorb to glass (autosampler vials)
- manageable with labeled internal standards, problematic for others without analytical standards

Solid-Phase Extraction

- laborious & expensive
- contamination (PTFE)

analyte loss (breakthrough esp. for short-chain PFAS)

Micro Liquid-Liquid Extraction into Organic Solvent

1) Add 10 µL 6M HCl to 3mL Groundwater Sample

2) Saturate Groundwater with NaCl (~ 1 g)

3) Spike Internal Standards

4) Extract 3x 10% TFE/90% EtOAc (1 mL)

4) Bring to 1.5 mL with MeOH

5) Inject 900 µL by LVI

Chromatograms

Method Performance

Analyte		Accuracy	Precision	Analyte	LOD	Accuracy (%)		
	(IIG/L)	(/0)	(/0 K3D)		(IIG/L)	Accuracy (%)	(% KSD)	
PFBA	4.1	106	9.4	4–2 FtS	1.6	105	12	
PFPeA	1.1	102	4.8	6–2 FtS	0.84	99	11	
PFHxA	1.4	101	4.2	8–2 FtS	1.9	106	10	
PFHpA	1.8	106	11					
PFOA	1.5	107	8.5	5–3 FtB	4.6	101	15	
PFNA	1.0	99	7.8	5–1–2 FtB	3.6	144	10	
PFDA	0.94	105	8.4	7–3 FtB	7.9	96	10	
PFUdA	0.93	104	9.1	7–1–2 FtB	5.9	128	11	
PFDoA	1.0	103	6.4	9–3 FtB	6.1	78	13	
PFTrA	1.2	103	7.1	9–1–2 FtB	8.7	103	11	
PFTeA	1.7	106	5.9					
		100		6-2 FtSaB	23	131	11	
PFBS	1.2	98	11	6–2 FtSaAm	67	117	8.2	
PFHxS	1.7	96	3.7					
PFHpS	0.88	100	11	6–2 FtTAoS	2.6	107	9.1	
PFOS	0.81	104	6.3	6–2 FtTHN+	5.0	101	5.6	
PFDS	0.71	103	2.8					

Application 3b: Modified Organic Extracts Perand Polyfluoroalkyl Substances in Groundwater

Allred, B. M.; Lang, J. R.; Barlaz, M. A.; Field, J. A., Orthogonal zirconium diol/C18 liquid chromatography-tandem mass spectrometry analysis of poly and perfluoroalkyl substances in landfill leachate. *J. Chromatogr. A* **2014**, *1359*, 202-211.

Lang, J. R.; Allred, B. M.; Field, J. A.; Levis, J. W.; Barlaz, M. A., National Estimate of Per- and Polyfluoroalkyl Substance (PFAS) Release to US Municipal Landfill Leachate. *Environ. Sci. Technol.* **2017**, *51*, (4), 2197-2205.

Lang, J. R.; Allred, B. M.; Peaslee, G. F.; Field, J. A.; Barlaz, M. A., Release of Per- and Polyfluoroalkyl Substances (PFASs) from Carpet and Clothing in Model Anaerobic Landfill Reactors. *Environ. Sci. Technol.* **2016**, *50*, (10), 5024-5032.

Robel, A. E.; Marshall, K.; Dickinson, M.; Lunderberg, D.; Butt, C.; Peaslee, G.; Stapleton, H. M.; Field, J. A., Closing the Mass Balance on Fluorine on Papers and Textiles. *Environ. Sci. Technol.* **2017**, *51*, (16), 9022-9032.

Summary

- Many LC-MS/MS analyses simply don't require SPE (chemically redundant)
- Eliminating SPE by LVI saves time and money by reducing steps and waste
- Divert valves offer control over matrix components (salts in seawater)
- LVI does not have to result in shorter analytical column lifetimes or dirtier mass spectrometers

Acknowledgments

- Strategic Environmental Research and Development Program (SERDP)
- National Science Foundation
- Oregon Health Sciences University Medical Research Fund & National Institute of Drug Abuse
- **EPA STAR Program**
- NELAC Institute

